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Abstract

An evaporation model compatible with interface-capturing schemes for vapor–liquid flow is presented. The model for-
mulation is largely independent of the specific realization of interface-capturing and relies on a continuum-field represen-
tation of the source terms implementable in a broad class of CFD models. In contrast to most other numerical methods for
evaporating interfacial flows, the model incorporates an evaporation source-term derived from a physical relationship for
the evaporation mass flux. It is shown that especially for microscale evaporation phenomena this implies significant devi-
ations of the interface temperature from the saturation temperature. The mass source-term distribution is derived from the
solution of an inhomogeneous Helmholtz equation that contains a free parameter allowing to tune the spatial localization
of the source. The evaporation model is implemented into the volume-of-fluid scheme with piecewise linear interface con-
struction. Results are obtained for three analytically or semi-analytically solvable model problems, the first two being one-
dimensional Stefan problems, the third a free droplet evaporation problem. In addition, a two-dimensional film boiling
problem is considered. Overall, the comparison between the CFD and the (semi)-analytical models shows good agreement.
Deviations exist where convective heat transfer due to spurious currents is no longer negligible compared to heat conduc-
tion. With regard to the film boiling problem, a similar evaporation pattern as recently identified using a level-set method is
found. A major advantage of the developed evaporation model is that it does not refer to intrinsic details of the interface-
capturing scheme, but relies on continuum-field quantities that can be computed by virtually any CFD approach.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Evaporation model; Interfacial flow; Volume-of-fluid method; Stefan problem; Droplet evaporation; Film boiling
1. Introduction

In the past decades a variety of computational schemes for the computation of free-surface or interfacial
flows have been developed. There are mainly two classes of approaches to model such types of flows. The first
class contains the interface-tracking methods where a boundary-fitted grid is used to follow the motion of a
vapor–liquid or liquid–liquid interface. This implies that the grid has to deform to follow to interfacial motion.
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The second class contains the interface-capturing methods that rely on a fixed grid on which a numerical rep-
resentation of the interface is propagated. Interface-tracking methods potentially provide a high-level of accu-
racy but are usually limited to specific types of problems and are not easily capable of modeling topologically
nontrivial scenarios such as droplet pinch-off or coalescence. By contrast, interface-capturing methods have
proven to be versatile and powerful schemes for computation of a broad class of flows and therefore have
found much more widespread use than interface-tracking schemes. For this reason they form the fundament
of the work reported in this article.

Two of the most popular versions of interface-tracking methods are the volume-of-fluid (VOF) [10] and the
level-set [16] scheme. In the VOF method a scalar field quantity is introduced and advected on the grid encod-
ing the volume-fraction of the two fluid phases. The fluid interface is located where the volume-fraction func-
tion shows a sharp transition between the two values representing the two different phases. The level-set
approach is similar to the VOF scheme in the sense that a scalar field quantity – the level-set function – sig-
naling the presence of either one of the two phases is advected on a grid. However, in this case the field quan-
tity is not interpreted as a fluid volume fraction, but as a distance to the interface which itself corresponds to
an isovalue manifold of the level-set function. An alternative interface-capturing scheme was developed in the
group of Tryggvason [25]. In this so-called front-tracking scheme the fluid interface is represented by marker
points connected by line segments. Interface advection is done by moving the marker points on a fixed grid.

In the past decade interface-tracking schemes have been extended to account for evaporative mass transfer
between the phases. Corresponding extensions of the numerical models have been reported for the level-set
[20,21,1,28,14,7,23], the VOF [27] and the front-tracking scheme [12,29], as well as for a combined level-set-
VOF method [24]. While it has been convincingly demonstrated in many cases that using these approaches
evaporating interfacial flows can be modeled accurately, the schemes referred to above are usually quite spe-
cific. Here the term ‘‘specific” refers to the fact that often quite limiting assumptions about the boundary con-
ditions at the fluidic interface are made or that the implementation of evaporative mass transfer is done by
referring to special, intrinsic details of the numerical schemes. As far as the thermal boundary condition at
the fluidic interface is concerned, it is almost standard to assume that the interface is at saturation temperature
[20,21,1,14,7,23,27,29,24]. This, however, is a simplifying assumption that can be violated in specific cases, as
discussed in detail by Juric and Tryggvason [12]. The implementation of evaporative mass transfer has been
done by deriving a source-term distribution from a special ‘‘smeared-out” heaviside function [20,21,1,14], by
introducing a mass-correction step in the numerical calculation of the level-set function [28], by adding a mass
source-term to the cells that are cut by the fluid interface [27,24], or by iteratively determining the velocity of
the interface markers taking into account the mass source-term [12].

By contrast, in this article a numerical evaporation model is presented that does not refer to details of the
specific numerical algorithms used for solving the continuity, momentum, phase distribution and enthalpy
equations and that should be applicable in the context of both the VOF and the level-set scheme. All quantities
needed for implementing the effects of phase change are derived from scalar fields computed on a numerical
grid. The method is constructed in such a way that the phase change feature can be added to an existing inter-
face-tracking algorithm the numerical details of which (grid type, type of discretization, etc.) are largely unim-
portant. In addition, the method allows accommodation of a broad class of boundary conditions at the fluid
interface and is not limited to a situation where the interface is at a fixed temperature.

2. Thermal boundary condition at the vapor–liquid interface

Before turning to the actual evaporation model, it is helpful to spend a few thoughts on the thermal bound-
ary condition at the vapor–liquid interface. This is especially true since in CFD models for evaporating flows
the interface temperature is almost always set equal to the saturation temperature, whereas a claim of the
method to be developed in this article is to allow a simple incorporation of more general relationships.

The question in which specific situations significant deviations of the interface temperature from the satu-
ration value may occur can in principle be answered by referring to the detailed analysis of Juric and Tryggva-
son [12]. Here, this problem should be revisited in a somewhat simplified context. One of the simplest models
accounting for deviations of the interfacial temperature from the saturation temperature is that of Tanasawa
[22] which contains a linear dependence of the heat flux on the excess temperature of the phase boundary:
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e ¼ aeðT i � T satÞ; ð1Þ
where jh
e is the evaporation heat flux density, T i the temperature of the phase boundary, and T sat the saturation

temperature. The evaporation heat transfer coefficient is given by
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; ð2Þ
where ve is the evaporation coefficient, he the enthalpy of evaporation, R the gas constant for water and qv the
vapor density. In order to quantify the deviations of the interfacial temperature from the saturation temper-
ature, the situation sketched in the inset of Fig. 1 is considered. A vapor–liquid interface is located at a dis-
tance d from a solid wall at constant temperature T 0 > T i. Using
jh ¼ jh
e ¼ k

T 0 � T i

d
; ð3Þ
where jh is the heat flux from the wall to the interface and k the thermal conductivity, one finds the dimen-
sionless deviation of the interfacial temperature from the saturation temperature:
T i � T sat

T 0 � T sat

¼ 1

1þ aed
k

: ð4Þ
This function of the dimensionless parameter x ¼ aed=k is displayed in Fig. 1. The deviation of the interfacial
temperature from the saturation temperature is increasing with decreasing length scale d. This means that
especially when studying evaporation phenomena on the micro- and nanoscale it has to be taken into account
that the temperature of a vapor–liquid interface is not necessarily equal to the saturation temperature. Taking
the evaporation of water at atmospheric pressure as an example and assuming an evaporation coefficient of
0.1, at a length scale of d � 81 lm the dimensionless temperature deviation is equal to 0.01, while at
d � 7 lm it has increased to 0.1. This simple example shows that on small length scales the deviations of
the interfacial temperature from the saturation temperature can no longer be neglected.

It should be emphasized that heat and mass transfer through vapor–liquid interfaces are complex phenom-
ena for which a number of effects not included in Eq. (2) may play a role. The importance and interplay of
these effects are discussed in a review article by Wayner [26]. A curved interface causes a Laplace pressure that
can lead to local deviations from the equilibrium with the vapor phase at saturation pressure. Van der Waals
forces between the solid wall and the liquid equally shift the equilibrium between the two phases and may give
rise to a thin adsorbed liquid film. In an electrolyte, a Debye layer can form at a solid wall, making it necessary
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to include electrostatic forces in the analysis that cause a further shift of the phase equilibrium. The latter two
phenomena, van der Waals and electrostatic forces, usually become important for liquid films with a thickness
of some 10 nm. The aim of the present work is not to build a model for the variety of these phenomena, but to
provide a framework for the simple implementation of suitable evaporation models.

The numerical scheme to be presented in the following chapters has been developed especially to study
micro- and sub-microscale evaporation phenomena, but is not limited to this regime. It also allows incorpo-
ration of a number of different evaporation models, given that the temperature jump across the vapor–liquid
interface can be neglected. Bond and Struchtrup [3] provide a detailed analysis of the different results and lim-
iting cases of kinetic gas theory for the evaporation mass flux. Key quantities of these models are the interac-
tion parameters of vapor molecules with a vapor–liquid interface. The condensation coefficient is the
probability that a molecule hitting the liquid surface gets adsorbed. Analogously, the evaporation coefficient
measures how many molecules escape from the surface. The classical evaporation theories of Hertz–Knudsen
[9,13] and Schrage [19] incorporate certain assumptions for the condensation and evaporation coefficients,
besides relying on specific relationships between these coefficients. In Hertz–Knudsen theory the condensation
coefficient is equal to 1, whereas in Schrage’s theory a condensation coefficient independent of the molecular
impact energy is assumed. In principle, after the decision about the fluid system to consider has been made, the
choice of the specific evaporation model can be based on corresponding experimental data for the condensa-
tion and evaporation coefficients and their energy dependence. Throughout this work the model of Eqs. (1)
and (2) will be used that incorporates a linear relationship between the evaporation heat or mass flux and
the temperature difference at the interface. Such a linear relationship can be derived from Schrage’s theory
in the case of small deviations from equilibrium, i.e. ðT i � T satÞ=T sat � 1 [22].

3. Governing equations and numerical model

In this section the underlying equations for transport of mass, momentum and heat are defined and it is
shown how evaporative mass transfer between the two phases can be incorporated using an additional scalar
field. Furthermore, it is assumed that the distribution of vapor and liquid is computed based on the level-set,
the VOF, or a similar scheme. The numerical model is largely independent of the specific interface-tracking
scheme. Therefore, in this section only a few basic assumptions about the way of computing the phase distri-
bution are made.

Both fluids are treated as incompressible, so that the momentum conservation equation is given by
q
ou

ot
þ u � rð Þu

� �
¼ �rp þr � sþ rjrC þ f; ð5Þ
where the viscous stress tensor is defined by
sij ¼ l
oui

oxj
þ ouj

oxi

� �
: ð6Þ
The velocity and pressure fields are denoted as u and p, respectively, the density q and viscosity l are position-
dependent quantities, assuming values of ql, ll in the liquid and qv, lv in the vapor phase, while the surface
tension r is assumed to be constant. C denotes the liquid volume-fraction. It is assumed that there exists a
sharp interface between vapor and liquid, so C either assumes a value of 1 or 0. Correspondingly, the vapor
volume-fraction is given as 1 � C. j is the curvature of the interface, expressed as
j ¼ �r � rC
j rC j : ð7Þ
All body forces such as gravity are collected in f. The mass conservation equation is written as
qr � u ¼ _q; ð8Þ

where the meaning and form of the source-term _q will be explained below. The enthalpy equation is
o

ot
qcpT
� �

þr � qcpuT
� �

¼ r � krTð Þ þ _h; ð9Þ
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where T denotes temperature and the material properties, cp (specific heat capacity at constant pressure) and k
(thermal conductivity) assume values cpl, kl in the liquid and cpv, kv in the vapor phase. _h is a source-term that
may contain contributions from physical heat sources in addition to model-specific terms, which will be de-
tailed below. Contributions from viscous heating are neglected in Eq. (9).

The essence of the evaporation model lies in the choice of the source terms, especially in their spatial dis-
tribution. _q will be chosen such that on the liquid side of a vapor–liquid interface, mass disappears and reap-
pears on the vapor side. _h will contain the contribution of the enthalpy of evaporation, among others. As a
first step, the gradient of the volume-fraction field is computed:
C0 ¼j rC j : ð10Þ

The volume-fraction appears as a primary field quantity within the VOF method. Within the level-set method,
C is computed via
C ¼ hðfÞ; ð11Þ

where h is the heaviside and f the level-set function. An important feature of C0 is that its integral over a region
enclosing a part of the vapor–liquid interface measures the interface content:
Z

X
j rC j dX ¼

Z
S

dS; ð12Þ
as sketched in Fig. 2. Thus, in three spatial dimensions the volume integral gives the interface area, in two
dimensions the corresponding area integral gives the interface length.

As a next step, the physical model for evaporative mass transfer has to be implemented. The evaporation
model is introduced as an evaporation mass flux jeðT i; T satÞ (in units mass per time per area), where T i is the
interface temperature and T sat is the saturation temperature corresponding to the pressure on the liquid side of
the interface. T sat may deviate from the corresponding saturation temperature in the vapor phase since the
interface curvature may cause a pressure jump. Both T i and T sat are quantities that depend on the solution
field of the flow simulation. They should be determined in each time step of a numerical computation. To sam-
ple the local evaporation rate, the field
u0 ¼ NjeCC0 ð13Þ

is computed. N is a normalization factor to be determined from the equation
N
Z

X
CC0dX ¼

Z
X

C0dX; ð14Þ
where X is the domain for the flow computation. In Eq. (13) the factor C is introduced to ensure that only field
values on the liquid side of the interface determine the evaporation mass flux. Using Eqs. (14) and (12) it is
easy to show that the choice _q ¼ �u0 yields the correct rate of disappearance of liquid through the interface
based on the evaporation model jeðT i; T satÞ. Yet it has to be made sure that the same mass reappears on the
vapor side of the interface.
S
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Fig. 2. Visualization of the integration regions of Eq. (12).
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In principle, evaporative mass transfer could be implemented into an interface-capturing model by intro-
ducing the source-term of Eq. (13) and a corresponding counterpart on the vapor side into the mass conser-
vation equation. This, however, results in a source-term distribution localized in a very narrow region at the
interface which was found to lead to numerical instabilities, as will be discussed later. To avoid instabilities, a
source-term distribution smeared-out over a few computational cells in the vicinity of the interface is needed.
A more suitable distribution can be computed by solving an inhomogeneous Helmholtz equation for an addi-
tional scalar field u:
r2u ¼ 1

DtD
ðu� u0Þ; ð15Þ
where Dt is a parameter with dimension of time and D a diffusion constant. This equation has to be solved in
the entire computational domain for the flow problem X, for each time step of a transient simulation, and with
the boundary condition
n � rujoX ¼ 0; ð16Þ

where n is a unit normal vector on the boundary. Via Gauss’s theorem
1

DtD

Z
X
ðu� u0ÞdX ¼

Z
X
r2udX ¼

Z
oX
ðruÞ � dS ¼ 0; ð17Þ
this boundary condition ensures that the volume integrals of u and u0 are identical. To understand why u is a
smeared-out version of u0 and how the parameter combination DtD controls the degree of smearing, consider
a time-dependent ‘‘concentration” field w with the identification
wðtÞ � u0; wðt þ DtÞ � u: ð18Þ

Then Eq. (15) can be rewritten as
wðt þ DtÞ ¼ wðtÞ þ DtDr2wðt þ DtÞ ð19Þ

which is an implicit first-order time stepping scheme for solving the diffusion equation
ow
ot
¼ Dr2w: ð20Þ
Thus, u approximates a diffusively smeared version of u0 with Dt being the time increment between the ori-
ginal and the smeared distribution and D the corresponding diffusion constant. The length scale over which
the original source-term is smeared is given by ðDtDÞ1=2. From u the complete source-term incorporating evap-
orative mass transfer between the phases is determined as
_q ¼ N vð1� CÞu� N lCu: ð21Þ

The first term accounts for creation of mass on the vapor side, the second term for disappearance of mass on
the liquid side of the interface. The normalization factors N v and N l ensure that all mass that disappears reap-
pears on the other side of the interface and that the evaporation mass flux density assumes the correct value
jeðT i; T satÞ. They are determined from the equations
N v

Z
X
ð1� CÞudX ¼

Z
X

udX

Nl

Z
X

CudX ¼
Z

X
udX

ð22Þ
The source-term _h in the enthalpy equation contains a contribution from the enthalpy of evaporation, i.e. a
cooling term reflecting the latent heat of the phase change which has to be coupled to the mass source-term.
Before addressing this contribution, another aspect should be examined. Owing to the structure of the mass
source term of Eq. (21), there is a finite region around the vapor–liquid interface over which liquid disappears
and vapor emerges, referred to as the evaporation region. This situation is sketched in Fig. 3 in which the con-
vective enthalpy flux density jh ¼ qcpunT is schematically plotted along a direction x normal to the interface in
a coordinate frame co-moving with the interface. un is the velocity component normal to the interface and it
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has been assumed that T does not vary significantly in the x-range considered. On the liquid side of the inter-
face, the enthalpy flux decreases due to the decreasing mass flux. The opposite effect is observed on the vapor
side. However, bearing in mind that Eq. (9) is a conservation equation, such a collapse of the enthalpy flux as
sketched in Fig. 3 cannot happen. Rather than that, the coupled solution of the momentum and enthalpy
equations together with the mass conservation results in a heating of liquid and a cooling of vapor in the evap-
oration region, generating a temperature peak at the interface. This is an artifact of the structure of the mass
source-term and has to be removed. It can be removed by adding a correction source-term
_hc ¼ ðN vð1� CÞcpv � NlCcplÞTu: ð23Þ

As far as the source-term from the enthalpy of evaporation is concerned, the numerical experiments

reported in the following sections have indicated that it is not necessary to compute a smeared version as
in the case of the mass source-term. An enthalpy source-term localized in a narrow region around the interface
does not seem to cause any numerical problems. Therefore, the cooling due to evaporation is accounted for by
a term
_hð1Þe ¼ �heu0: ð24Þ

Alternatively, the source-term can also be shifted to the liquid side of the interface
_hð2Þe ¼ �heN
ð0Þ
l Cu0; ð25Þ
or to the vapor side
_hð3Þe ¼ �heN ð0Þv ð1� CÞu0; ð26Þ

where the normalization factors are determined from
N ð0Þv

Z
X
ð1� CÞu0dX ¼

Z
X

u0dX

N ð0Þl

Z
X

Cu0dX ¼
Z

X
u0dX

ð27Þ
It should be noted that the difference between Eqs. (24)–(26) only exists on a finite grid and vanishes in the
limit of zero grid spacing, since then u0 becomes proportional to a delta function located at the interface. Fi-
nally, the complete source-term for Eq. (9) is given as a sum of three different contributions
_h ¼ _hc þ _hðiÞe þ _h0; ð28Þ



5878 S. Hardt, F. Wondra / Journal of Computational Physics 227 (2008) 5871–5895
where _hðiÞe refers to any of the three versions Eq. (24), (25), or (26) and _h0 contains all other source terms, e.g.
from exo- or endothermic chemical reactions.

This completes the specification of the evaporation model. Again, it should be noted that this model is
solely based on the continuum quantities C and u and a priori does not refer to specific realizations of inter-
face-tracking schemes such as the level-set or the VOF method. The accuracy of the model depends on a num-
ber of different factors. First of all, there are the usual numerical errors related to the methods for solving the
mass, momentum, and enthalpy conservation equation as well as the interface-capturing scheme. These will
not be further discussed here, since the evaporation model is largely independent of the specific choice of these
schemes. Secondly, there is a generic error of the evaporation model that can be traced back to Eq. (15). The
normalization factors N g and Nl in Eq. (21) ensure global mass conservation, but the method for computing
the mass source terms on both sides of the vapor–liquid interface can violate local mass conservation, thereby
introducing a non-local coupling to the model. This effect can be understood from Fig. 4 that shows the field u
in the vicinity of a flat (solid line) and a curved (dotted line) interface as a function of the interface-normal
coordinate x. For reasons of symmetry the integrals of u in the vapor and the liquid phase are the same if
the interface is flat, whereas a curved interface leads to a non-symmetric u with one of the integrals being big-
ger than the other. Translated to the mass source terms this means that more liquid disappears than reappears
as vapor on the other side or vice versa.

In order to compute the magnitude of the error related to curved interfaces, a spherical surface with radius
b is considered as the prototype of a curved interface. For this sphere, two integrals are defined as
Fig. 4.
line) in
C< ¼
Z b

0

uðrÞr2dr; C> ¼
Z 1

b
uðrÞr2dr: ð29Þ
As a measure for the numerical error the asymmetry parameter
d ¼ C> � C<

C> þ C<

: ð30Þ
is used. In Appendix A it is shown that
d �
ffiffiffi
a
p

b
ð31Þ
to leading order in a1=2=b, the length scale over which the smearing of the mass source-term is performed (with
a ¼ DtD) divided by the radius of curvature. To suppress the violation of local mass conservation and the
occurrence of non-local coupling terms, a1=2=b should be as small as possible. In practice, the length scale
a1=2 should extend over a few grid cells to avoid numerical instabilities. When the grid is refined, a1=2 can
be reduced proportionally, as becomes evident from the numerical experiments reported in the following
Liquid Vapor

x

ϕ

Sketch of the scalar field from which the source-term distribution is derived in the case of a flat (solid line) and a curved (dotted
terface.
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sections. Thus, whenever the time evolution of curved interfaces is computed, the grid should be chosen fine
enough to guarantee that a1=2=b always stays a small number, whereupon b is the local curvature of the
interface.

4. Validation cases

In this section three analytically or semi-analytically solvable problems and one additional problem are pre-
sented which will serve as benchmark cases for the evaporation model. The first one is a one-dimensional test
case where heat is transferred through a vapor phase to a vapor–liquid interface. The second one, also set up in
one spatial dimension, concerns the evaporation of a liquid film. The third one is a spherically symmetric
droplet evaporation problem. In addition, a film boiling problem is considered, for which, however, only
numerical solutions are known.

4.1. Stefan problem 1

This problem has already been considered by Son and Dhir [20] and by Welch and Wilson [27]. Heat is
transferred by conduction from a flat, isothermal surface through a vapor phase to a liquid (cf. Fig. 5).
The surface is at a temperature above the saturation temperature, so liquid evaporates, leading to a motion
of the interface to the right. It is assumed that during the evaporation process the interface stays flat. Therefore
the problem can be regarded as one-dimensional.

The boundary conditions are
T ðx ¼ 0; tÞ ¼ T 0

T ðx ¼ xiðtÞ; tÞ ¼ T sat

ð32Þ
The velocity ui of the vapor–liquid interface is determined from
qgheui ¼ �kv

oT
ox

����
x¼xi�e

; ð33Þ
where e is an infinitesimal positive number. As an initial condition, xi ðt ¼ 0Þ ¼ 0 is assumed. The solution to
this problem has been worked out long ago by Neumann and is given as [8]
xiðtÞ ¼ 2b
ffiffiffiffiffiffi
kvt

p
T ðx; tÞ ¼ T 0 þ

T sat � T 0

erf bð Þ erf
x

2
ffiffiffiffiffiffi
kvt
p

� � ð34Þ
where kv ¼ ðkvÞ=ðqvcpvÞ is the thermal diffusivity, erf is the error function and b is determined from
b expðb2ÞerfðbÞ ¼ cpvðT 0 � T satÞffiffiffi
p
p

he

: ð35Þ
liquid vapor

T >T0 sat

T x,t( ) T x,t( )
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x
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T = Ti satT > T0 sat
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1 2

Fig. 5. Specification of the first (left) and the second (right) Stefan problem.
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4.2. Stefan problem 2

The geometry and boundary conditions of this problem are depicted on the right side of Fig. 5. A liquid
film covers a heated wall and evaporates. The wall surface is at a constant temperature above the saturation
temperature, while this time the simple boundary condition of an isothermal vapor–liquid interface is replaced
by
aeðT ðx ¼ xiðtÞ; tÞ � T satÞ ¼ �kl
oT
ox

����
x¼xi�e

: ð36Þ
In this expression, ae is the evaporation heat transfer coefficient of Eq. (2) and e is an infinitesimal positive
number. Again, it is assumed that during the evaporation process the interface stays flat, so the problem
can be regarded as one-dimensional.

The main purpose of considering this test case lies in the computation of the pressure drop originating from
phase change. The incompressibility condition imposed in this work together with the density difference
between the liquid and the vapor demands for an acceleration of the fluid when it changes its phase. The pres-
sure drop required to drive this acceleration is known as recoil pressure and can easily be calculated analyti-
cally. Taking into account that, owing to the symmetry of the problem, there are no shear stresses and
corresponding viscous pressure losses, the sum of potential and kinetic energy is constant across the interface,
i.e.
p þ q
2

u2
���
x¼xi�e

¼ p þ q
2

u2
���
x¼xiþe

; ð37Þ
where p, q, u are pressure, density and flow velocity, respectively. In other words, the sum of the static pressure
pstat ¼ p and the dynamic pressure pdyn ¼ qu2=2 assumes the same value on both sides of the interface.

In fact there is also a recoil pressure effect in the previously defined test case, Stefan problem 1. However,
due to the large density difference between liquid and vapor the interface is heavily accelerated in this case
whereas it moves only comparatively slowly in the case considered here. In Stefan problem 1, an analysis
of the recoil pressure would have to include inertial forces in an accelerated reference frame. For this reason
a second test case was set up that is more straightforward to analyze.

4.3. Droplet evaporation

As a third validation case, the evaporation of a spherical, uniformly heated droplet is considered (cf. Fig. 6).
It is assumed that the spherical symmetry is not broken during the evaporation process which allows reducing
the problem to a one-dimensional case. Analogously as in Eq. (36), at the vapor–liquid interface the heat flux
is given as
aeðT ðr ¼ bðtÞ; tÞ � T satÞ ¼ �kl
oT
or

����
r¼b�e

; ð38Þ
where ae is the evaporation heat transfer coefficient of Eq. (2). The radial coordinate and the droplet radius are
denoted as r and b, respectively. The temperature field inside the droplet is computed by solving the heat con-
duction equation subject to the boundary condition of Eq. (38).

The evaporation heat transfer goes along with an evaporation mass flux density of
je ¼
1

he

aeðT ðr ¼ bðtÞ; tÞ � T satÞ: ð39Þ

The time evolution of the droplet radius is obtained from mass conservation:
4pb2je ¼ �ql
4pb2db

dt
ð40Þ
yielding
db
dt
¼ � je

ql
; ð41Þ
where je is a function of time via Eq. (39).
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Fig. 6. Specification of the droplet evaporation problem.
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The solution for the temperature field within the droplet can be obtained using the method of Green’s func-
tions. As described in [2], the general form of the temperature field eT ¼ T � T sat fulfilling the boundary con-
dition Eq. (38) is
eT ðr; tÞ ¼ Z b

0

Gðr; t j r0; 0ÞeT 0ðr0Þ4pr02dr0 þ 1

qlcpl

Z t

t0¼0

Z b

r0¼0

Gðr; t j r0; t0Þ _h0ðr0; t0Þ4pr02dr0dt0; ð42Þ
where eT 0ðrÞ is the temperature distribution eT over the sphere at t ¼ 0 and _h0ðr; tÞ is the heating rate distribu-
tion. G is the Green’s function for the sphere fulfilling the boundary condition Eq. (38), written as [2]
Gðr; t j r0; t0Þ ¼ 1

2pbrr0
X1
m¼1

exp �b2
m

kl

b2
ðt � t0Þ

� �
b2

m þ B2

b2
m þ B2 þ B

sin bm
r
b

� 	
sin bm

r0

b

� �
; ð43Þ
where kl ¼ kl=ðqlcplÞ and
B ¼ aeb
k
� 1

bm cot bm ¼ �B
ð44Þ
Here the case should be considered that eT 0ðrÞ ¼ 0 and _h0 is space time independent. Then the integrations of
Eq. (42) are easily performed, resulting in
eT ðr; tÞ ¼ 2 _h0b3

kl

X1
m¼1

1

b2
m

1� exp � klb
2
m

b2
t

� �� �
b2

m þ B2

b2
m þ B2 þ B

sin bm

b2
m

� cos bm

bm

 !
sin bmr=bð Þ

r
: ð45Þ
When inserting eT ðr ¼ b; tÞ into Eq. (39) and using the resulting expression in Eq. (41), a nonlinear ordinary
differential equation in the unknown bðtÞ is obtained. This can be solved by any standard integration scheme,
yielding the radius of the evaporating droplet as a function of time and via Eq. (45) the time-dependent tem-
perature profile.

4.4. Film boiling

Finally, a two-dimensional film boiling problem is considered. The situation studied is depicted in Fig. 7. A
solid wall heated to a temperature above the saturation temperature of a liquid is covered by a thin vapor film
above which the corresponding liquid phase is found. Because of the higher density of the liquid compared to
vapor, a Rayleigh-Taylor instability is triggered, amplifying perturbations of the vapor–liquid interface and
finally leading to the growth of bubbles. The most unstable wavelength is given by
k0 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r

gðql � qvÞ

s
; ð46Þ
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Fig. 7. Schematic of the film boiling problem.
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where g is the gravitational acceleration. If initially the interface is deformed sinusoidally with this wavelength,
as shown in Fig. 7, it is expected that bubbles with a pitch of k0 grow from the film.

The two-dimensional film boiling problem has been studied in a number of papers, among others in the
works of Welch and Wilson [27], Juric and Tryggvason [12], and Gibou et al. [7]. There are no analytical solu-
tions, so the comparison can only be done with previously obtained numerical results.

5. Numerical details

All CFD results to be reported in the following were obtained with the VOF method as implemented in the
commercial finite-volume based flow solver FLUENT, versions 6.2.16 and 6.3. In combination with the other
finite-volume discretized transport equations this allows solving interfacial flow problems coupled to heat
transfer. The evaporation model as described in Section 3 was implemented into FLUENT via user-defined
subroutines.

Concerning the VOF method, the calculations were performed with the PLIC scheme allowing reconstruc-
tion of the interface orientation within single computational cells. Youngs’ method [30] generalized to unstruc-
tured meshes was used for that purpose. In 2D the method describes the interface within a computational cell
as a straight line. In particular this means that it is always kept sharp and a diffusive smearing as in other ver-
sions of the VOF method is avoided. Surface tension is implemented as a body force, as proposed by Brackbill
et al. [4]. Specifically, the body force is computed as
fst ¼ 2rj
qlCrC þ qvð1� CÞrC

ql þ qv

; ð47Þ
where the curvature j is obtained from
j ¼ �r n

j n j ð48Þ
with n ¼ rC.
For time stepping, a first-order implicit scheme
/nþ1 ¼ /n þ DtF ð/nþ1Þ ð49Þ

was chosen, where F ð/Þ denotes the right-hand side of the transport equation under study:
d/
dt
¼ F ð/Þ: ð50Þ
In all transport equations, the discretization of the convective term was done using a third order scheme,
obtained from
/f ¼ #/f ;CD þ ð1� #Þ/f;SOU: ð51Þ
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In this expression, /f is the value of the field quantity under study at a face of a computational cell, /f;CD is the
corresponding value obtained by computing the weighted average of / at the centroids of the two neighboring
cells (central differencing), /f ;SOU is the corresponding value obtained by applying a second-order upwind
scheme, and # is a blending factor. The contribution from the second-order upwind scheme is given by
/f ;SOU ¼ /c þ Ds � 1

V

X
f

Af
~/f ; ð52Þ
where /c is the field value at the cell centroid upstream of the corresponding face, Ds is the displacement vector
from the upstream cell centroid to the face centroid, and V is the upstream cell volume. The sum extends over
all faces of the upstream cell, Af are the corresponding face areas, and ~/f are the field values at the face centers
obtained by computing a weighted average of the values at the neighboring cell centroids. The diffusive term in
the transport equations was always evaluated using a central-differencing scheme, i.e. the field gradient at the
face centroids was determined from a weighted average of the field values at the neighboring cell centroids.
With regard to the solution of the pressure-correction equation, a pressure staggering scheme was used to
compute the pressure values at the cell faces from the corresponding cell centroid values. This scheme mimics
the pressure evaluation on the cell faces as performed on a staggered grid [17]. For pressure-velocity coupling,
the PISO scheme [11] was used.

If not stated otherwise, the following material properties of the vapor and liquid phase were assumed:
qv ¼ 1 kg/m3, ql ¼ 103 kg/m3, lv ¼ 10�2 mPa s, ll ¼ 10 mPa s, cpv ¼ 103 J/(kg K), cpl ¼ 103 J/(kg K), kv ¼
10�2 W/(m K), kl ¼ 10�1 W/(m K). The enthalpy of evaporation and the surface tension were chosen he ¼
106 J/kg and r = 10 mN/m, respectively. No attempts were made to incorporate the effects of Laplace pressure
(in the case of droplet evaporation and film boiling) on the saturation temperature. Instead, the saturation
temperature was set to a fixed value of 373.15 K. In accordance with the second and third test case, the evap-
oration heat transfer coefficient ae of Eq. (2) was used, yielding an evaporation mass flux density as given in
Eq. (39). The latent heat was implemented as a source-term as defined in Eq. (25). The scale parameter Dt � D
in Eq. (15) was always chosen such that the mass source-term density in each of the phases extends over 2–3
computational cells.

While all other model parameters are more or less easily accessible, the evaporation coefficient ve in the
evaporation heat transfer coefficient is only known with a large degree of uncertainty even for the most com-
mon liquids. Marek and Straub [15] have analyzed the published data for the evaporation coefficient of water
and found a range of roughly 10�3 < ve 6 1. Within that range re ¼ 1 is the numerically most challenging
value because it results in the fastest evaporation heat transfer. For this reason, an evaporation coefficient
of 1 was used in all the calculations reported.

In context with the specific comparison of the CFD model results with the analytical results for the Stefan
problems, a quasi 1D computational domain with only one grid cell in the direction of translational invariance
was set up. The extension of this domain was chosen 1 mm and 0.5 mm for Stefan problem 1 and 2, respec-
tively. For Stefan problem 1, the domain is bounded by two walls at xmin ¼ 0 and xmax ¼ 1 mm. For Stefan
problem 2, there is one wall at xmin ¼ 0 and one pressure boundary at xmax ¼ 0:5 mm. The thermal boundary
conditions are
T jx¼xmin
¼

383:15 K ðStefan 1Þ
573:15 K ðStefan 2Þ



; T jx¼xmax

¼ 373:15 K; ð53Þ
supplemented by
du
dx

����
x¼xmin

¼ du
dx

����
x¼xmax

¼ 0; ð54Þ
and the impermeability condition u ¼ 0 for the velocity field at the wall boundaries. The zero-flux boundary
condition for the scalar field, Eq. (54), is used for all boundaries of all model problems considered here. As an
initial condition for the Stefan problems, the velocity was set to zero in the complete domain and the temper-
ature equal to the saturation temperature. Furthermore, in Stefan problem 1 initially the domain was filled
with liquid. In the CFD calculation this situation was approximated by initializing a vapor–liquid interface
at x = 1 lm. In Stefan problem 2, the interface is initially located at x = 100 lm.
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In the analytical solution of Section 4.1 the vapor–liquid interface was treated as a boundary with a pre-
scribed temperature of T sat. In order to ensure in the CFD model that the interface is at a temperature very
close to T sat, the thermal diffusivity of the liquid phase was increased by orders of magnitude by choosing
ql ¼ 1 kg/m3 and kl ¼ 1 W/(m K). That way it is made sure that a possible deviation of the interface temper-
ature from the saturation temperature is rapidly diffused to the isothermal wall at x ¼ xmax. Furthermore, for
equal densities of liquid and vapor there is no volume expansion of the system, with which impermeable walls
would stand in conflict. For Stefan problem 1 (Stefan problem 2), the model domain was meshed with an equi-
distant grid of 1000 (500) computational cells.

The droplet evaporation problem was treated in a semicircular domain for which cylindrical symmetry was
assumed. The radius of the semicircular computational domain was set to values between rmax ¼ 3 lm and
rmax ¼ 15 lm. Initially, 2/3 of the domain (in terms of the radial coordinate) is filled with liquid, the rest with
vapor. The linear boundary serves as the symmetry axis of the 2D axisymmetric model, whereas on the semi-
circular boundary different boundary conditions may be defined. For the calculations reported, the following
boundary conditions were chosen:
pjr¼rmax
¼ const:;

oT
or

����
r¼rmax

¼ 0;
ou
or

����
r¼rmax

¼ 0; ð55Þ
where the polar coordinates r and h identify a point in the semicircular domain.
As an initial condition, all velocity components were set to zero and the temperature equal to the saturation

temperature. The phases were initialized such that all computational cells for which r 6 b0 ¼ 2rmax=3 were
filled with liquid, the rest with vapor. The heating rate _h0 is space time independent within the liquid phase
where it assumes a value of 1013 W/m3. In the vapor phase, no heating occurs ð _h0 ¼ 0Þ.

In contrast to the semi-analytical model which is based on the assumption of the droplet maintaining its
spherical shape during all stages of its evolution, the interface shape is explicitly computed within the CFD
model, meaning that deviations from the spherical shape may occur. Such deviations are observed in the
CFD calculations if the source-term of the mass conservation equation is derived from the sharply peaked
function C0, i.e. if no smearing is performed. In that case the interface develops recesses and bulges and loses
its spherical shape. To avoid that, the scale parameter ðDtDÞ1=2 of Eq. (15) was chosen such that the source
distribution (now derived from /) extends over about 4–5 computational cells (i.e. about two on each side
of the interface) in each case. It is then found that the interface instability is suppressed and the droplet main-
tains a close-to-spherical shape. To easily accommodate the semicircular shape of the domain, an unstructured
mesh of 8702 triangular cells was defined.

For the film boiling problem, different material properties were assigned in order to allow a comparison to
previously published results. Specifically, the same values as in [27] were chosen, namely qv ¼ 5 kg/m3,
ql ¼ 200 kg/m3, lv ¼ 5 mPa s, ll ¼ 100 mPa s, cpv ¼ 200 J/(kg K), cpl ¼ 400 J/(kg K), kv ¼ 1 W/(m K),
kl ¼ 40 W/(m K), he ¼ 104 J/kg and r = 100 mN/m and T sat ¼ 500 K. The gravitational acceleration was fixed
to g = 9.81 m/s2. The interface temperature was set to T sat, the situation considered in [27] and in virtually all
other related publications, by employing the model of Eq. (2) and multiplying the evaporation heat transfer
coefficient by a factor of 100.

As a model domain, the rectangular region shown in Fig. 7 was chosen. The width of the domain (x-direc-
tion) is k0=2, its height (y-direction) 3k0. The two vertical boundaries are symmetry boundaries. The lower hor-
izontal boundary is a wall with T ¼ T sat þ 5K and u = 0. On the upper horizontal boundary, the pressure was
set to a fixed value and the heat flux by conduction was set to zero. The initial temperature in the complete
domain was set to the saturation temperature. In order to trigger a bubble formation through the Rayleigh-
Taylor instability, a small perturbation of the most instable wavelength was added to a flat, horizontal inter-
face, giving an interface shape described by
y intðxÞ ¼ y0 þ Dy cos
2px
k0

� �
; ð56Þ
with y0 ¼ 9k0=128 and Dy ¼ k0=160. The computational domain was meshed with uniform Cartesian grids
with a resolution of 64 � 192 or 100 � 300 in x and y direction, the first of which will be referred to as the
coarse, the second one as the fine grid.
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6. Results and discussion

6.1. Stefan problem 1

Results of a comparison between the analytical and the CFD model for Stefan problem 1 are presented in
Fig. 8. The figure shows the interface position as a function of time for three different thermal conductivities of
the vapor phase. Besides the standard case according to the specifications made previously in this section, one
case with higher and one with lower conductivity was studied. The CFD results are displayed as symbols, the
analytical results as lines. The curves indicate how the evaporation process is speeded up with increasing ther-
mal conductivity of the vapor phase, whereupon excellent agreement between the analytical and the CFD
results is obtained.

Another comparison is shown in Fig. 9 which displays the temperature profile in the vapor phase for dif-
ferent values of the parameter cpvðT 0 � T satÞ, abbreviated as cpvDT . Temperature is nondimensionalized by
dividing through T 0 � T sat, while nondimensionalization of distance was done by dividing through the posi-
tion of the interface xi. In this representation the analytical temperature profile is time independent and comes
very close to a straight line for virtually any realistic value of cpvDT . The time independence is reproduced very
well by the numerical calculations. In order to examine in detail whether the shape of the curves is reproduced
by the CFD calculations, cpvDT was increased by a factor of 200 and 2000 with respect to its default value.
These two curves together with the default curve are shown in Fig. 9. Only at a 200-fold increase of cpvDT
a slight curvature of the temperature profile becomes visible which is further amplified at a 2000-fold increase.
The analytical data are well reproduced by the CFD results that only show some slight deviations. A reason
for the deviations could be the fact that an increase of cpv enhances the imbalance of the thermal diffusion time
scales between the two phases. It is well known that numerical interfacial flow computations become more
challenging when the imbalance of material properties between the phases increases [18].

6.2. Stefan problem 2

Next, the numerical results for Stefan problem 2 are presented. Before this is done it is helpful to reconsider
the numerical implementation of the mass source-term Eq. (21). In the region where the source-term is non-
zero (the vicinity of the vapor–liquid interface) the normal stress lou=ox does not vanish, different from what
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is usually obtained for incompressible flow. In the case of constant viscosity, this stress gives rise to a force
density of lo

2u=ox2, an artifact originating from the continuum-field representation of the mass source-term.
However, it is not difficult to see that this force density does not result in a net force. Let x1 and x2 be two
coordinates bracketing the region where the mass source-term is nonzero, either in the liquid or the vapor
phase, where
_qðx1Þ ¼ _qðx2Þ ¼ 0: ð57Þ

Integration of the spurious force density results in
l
Z x2

x1

o2u
ox2
¼ l

ou
ox

����
x2

� ou
ox

����
x1

 !
¼ 0; ð58Þ
due to Eq. (57). Thus, while the continuum representation of the mass source-term causes a nonvanishing dila-
tation stress and a corresponding force density, the net force being the integral over the force density is zero. A
force density in the fluid gives rise to a pressure drop. Owing to Eq. (58) it is expected that the pressure field is
locally modified in the vicinity of the vapor–liquid interface, but the net pressure drop related to the spurious
force density should be zero.

These simple arguments are confirmed by the numerical results for the pressure field in the vicinity of the
interface shown in Fig. 10. The diagram shows the static and dynamic pressure at two different times. Initially,
the interface is located at x = 100 lm. After 12 ms, the static pressure (dotted line) displays a plateau in the
liquid phase (left), reaches large negative values close to the interface (downward arrow), switches to large
positive values on the other side of the interface (upward arrow) until it falls off with a negative slope and
reaches its prescribed value zero at the outlet (not shown). At the same time, the dynamic pressure (dashed
line) is zero in the liquid phase and soon reaches a plateau in the vapor phase. After 44 ms a comparable sit-
uation is found, with the difference that the static pressure (solid line) does not display a negative slope in the
vapor phase.

These results are interpreted as follows. The evaporation process can be divided into two phases: (1) an ini-
tial phase where the linear temperature profile in the liquid builds up and (2) a quasi-steady-state evaporation
process where the linear temperature profile is maintained and the vapor–liquid interface slowly approaches
the heated wall. In phase 1 the evaporation mass flux changes rapidly as a function of time, whereas in phase 2



Fig. 10. CFD results for the second Stefan problem showing the static and dynamic pressure at two different times.
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only slow changes – determined by the decreasing thermal resistance of the liquid layer – are observed. The
curves in Fig. 10 at 12 ms still belong to phase 1. The slope of the static pressure in the vapor phase represents
the pressure loss due to acceleration of vapor, i.e. the bulk of the vapor has not yet reached its quasi-steady-
state velocity. This acceleration process has largely come to an end in phase 2, as apparent from the curves at
44 ms. In this case vapor is accelerated only in the vicinity of the interface. Both in phases 1 and 2 Eq. (37) is
fulfilled, which becomes immediately apparent from the pressure curves at 44 ms. In quasi-steady-state the sta-
tic (dynamic) pressure vanishes in the vapor (liquid) phase, and the plateau values of the two pressures are
identical. Only in the vicinity of the interface deviations from the expected functional form due to the spurious
force density related to the continuum formulation of the mass source terms are observed. It can thus be
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concluded that the model reproduces the correct recoil pressure distribution, apart from artifacts occurring in
the vicinity of the vapor–liquid interface.

6.3. Droplet evaporation

A comparison of the data of the semi-analytical model with the CFD results is shown in Fig. 11. The figure
shows the droplet volume divided by its initial value as a function of time for three different initial droplet
radii, 2 lm, 5 lm and 10 lm. The agreement between the semi-analytical and the CFD results is good for
the smallest droplet, whereas some deviations are visible for the larger droplets.

To uncover the reasons for the deviations it is worthwhile to note that the CFD calculations always result in
a faster shrinking of the droplet than the semi-analytical model. Thus, the CFD model predicts an enhanced
heat transfer from the interior of the droplet to its surface. The reason for this heat transfer enhancement is
most probably the convective heat flow due to the spurious currents induced by fluctuations of the vapor–
liquid interface [18]. Spurious currents are known to be a persistent problem in interfacial flow calculations.
In Fig. 12 typical velocity fields as obtained by the CFD calculation for the droplets of 2 lm and 10 lm initial
diameter are displayed. The figure shows that in the case of the 2 lm droplet the maximum velocity of these
fluctuations is about 4 cm/s, while for the 10 lm droplet it is about 6 cm/s. The time scale for convective heat
transfer is given by
Fig. 12
indicat
scon ¼
b0

�u
; ð59Þ
where �u is the average velocity of the fluctuations. By contrast, the time scale for heat transfer by conduction is
sdif ¼
b2

0

kl
: ð60Þ
Thus, sdif=scon scales approximately as b0 if �u does not change significantly with the size of the droplet. The
latter assertion is supported by the data shown in Fig. 12. By construction, the semi-analytical model for drop-
let evaporation does not contain contributions from convective fluxes. These are increasingly suppressed with
decreasing b0. Thus, this line of arguments explains why in Fig. 11 the agreement between the semi-analytical
and the CFD results is improved when the droplet size decreases.

This conclusion is also supported by the data displayed on the left side of Fig. 13, showing the dimension-
less volume of a droplet of 5 lm initial radius as a function of time for two different liquid thermal conduc-
tivities. The agreement between the CFD and the semi-analytical results is significantly better for the larger
conductivity, indicating that as long as heat conduction dominates over convection, the evaporation model
. Typical velocity field in an evaporating 2 lm droplet (left) and 10 lm droplet (right). The scale bars on the left and on the right
e the velocity magnitude in m/s.
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in conjunction with the VOF scheme produces accurate results. The right side of Fig. 13 again shows results
for a 5 lm droplet, this time with the default thermal conductivity, but with different enthalpies of evapora-
tion. As expected, the evaporation process slows down with increasing he, because the higher he, the faster the
droplet is cooled, leading to a decrease of the heat and mass fluxes. The deviations between the results of the
CFD and the semi-analytical model are not significantly different in the three cases, they only appear strongest
for he ¼ 500 kJ/(kg K) because they are generally enhanced in the final stages of the evaporation process
where V =V 0 � 1 due to accumulation of numerical errors.

In a recent article Francois et al. [5] have analyzed in detail the origin of spurious currents within the VOF
method. They compared different models for computing the curvature of the interface and implementation of
surface tension. Their conclusion is that the key factor for minimizing the spurious currents is a very accurate
computation of the interface curvature. A similar analysis was done by Gerlach et al. [6]. This and the
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arguments presented above suggest that the shortcomings that have become apparent when examining the val-
idation case of droplet evaporation are by no means generic to the evaporation model presented in this work
but are related to the curvature term Eq. (7). Thus, the key to improvements lies in more accurately fulfilling
the force balance around the interface by increasing the accuracy of the curvature computation. A quantitative
evaluation of the level of spurious currents in the present computational framework was done in Appendix B.

The current model gives very accurate results if convective heat transfer due to spurious currents is negli-
gible compared to heat conduction, as in the case of the 2 lm droplet. On the left side of Fig. 14, the radial
temperature profile in the droplet is shown after different time intervals. On the right side, temperature profiles
for a fixed time (5.1 ls) and different thermal conductivities are displayed. The semi-analytical results are rep-
resented as lines, the CFD results as symbols. The current droplet radius is denoted as b. The figure shows that
until about 19 ls the temperature keeps increasing and is then reduced due to shrinking of the droplet. In the
diagram with different thermal conductivities the curves become increasingly flat when the conductivity is
increased, as expected. Overall, an excellent agreement between the semi-analytical and the CFD results is
obtained.

6.4. Film boiling

Before discussing the computational results for the film boiling problem, a few remarks are appropriate.
Since a 2D problem with translational invariance is considered, it cannot be expected that the results give
an accurate representation of the physics of film boiling. The reason for this discrepancy lies in the inappro-
priate treatment of surface tension effects. A translationally invariant 2D model only accounts for the compo-
nents of interface curvature lying in the computational plane, whereas the out-of-plane components are
neglected. This means that surface tension driven hydrodynamic instabilities can usually not be captured in
a realistic way. In particular, it is known that the Rayleigh-Plateau instability can play a role for bubble pinch
off. As Gibou et al. [7] noted correctly, this instability does not show up in a translationally invariant 2D
model, leading to bubbles remaining connected to the vapor film by a thin neck, clearly an unrealistic scenario.
Despite of these limitations, the film boiling problem outlined in Section 4.4 has been chosen as a validation
case. This choice is motivated by the fact that the test cases considered here do not serve the purpose of explor-
ing physical evaporation problems in detail, but to provide a benchmark allowing to assess the performance of
the developed numerical model. The problem qualifies as a benchmark, since it has been studied by a number
of authors before and can be regarded as a standard CFD problem for evaporating flows.

The computed time evolution of the vapor–liquid interface on the fine grid is shown in Fig. 15. The top left
frame corresponds to a time of 0.3532 s after initialization, while time is incremented by 0.1 s for the subse-
quent frames. Only one single bubble is pinched off, followed by the growth of a vapor neck finally merging
with the bubble and forming a growing mushroom-shaped structure connected with the film covering the wall.
A very similar scenario is found when the coarse grid is used. For the same problem, using a level-set method,
Gibou et al. [7] found a quasi-steady bubble release pattern on their coarse grid, i.e. bubbles are pinched off
periodically. However, they identified this scenario as a numerical artifact, since bubble pinch-off was found to
be suppressed when they significantly refined their grid. Using a higher grid resolution they identified growing
mushroom-shaped structures.

In this respect the results of Fig. 15 confirm the findings of Gibou et al. Also on the coarse grid only the first
bubble pinches off, whereas subsequently mushroom-shaped structures are found. Apparently, in the context
of the numerical model used here, also the coarse grid is fine enough to suppress the unphysical breaking of the
neck, with some exceptions discussed below. These results in combination with the results of Gibou et al. sug-
gest that the quasi-periodic film boiling process described in the paper by Welch and Wilson [27] is due to a
non-converged solution and should not be interpreted as a physically realistic scenario.

It should be pointed out that, owing to the formation of thin vapor filaments, the 2D film boiling problem is
numerically quite challenging. Even on the fine grid the width of the neck is resolved only by a few (about 8)
computational cells. The significant fluctuations of the vapor–liquid interface discussed in Appendix B can
induce a pinch-off of the neck, as becomes apparent when extending the simulations to long enough times
(exceeding the time interval of Fig. 15). It is then observed that the neck breaks apart at apparently random
times and positions. This happens on the fine grid and even more frequently on the coarse grid. It should,



Fig. 15. The evolution of the vapor–liquid interface as computed on the fine grid. The horizontal line at the bottom of each frame is the
heated wall. The circle inside the mushroom-shaped bubble is a droplet having been created via coalescence of the neck with the initial
bubble.
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however, be noted that such phenomena are solely due to the specific interface-capturing scheme used and
have nothing to do with the evaporation model, as can be easily checked by plotting the spatial distribution
of the mass source terms that are virtually zero in the region of the neck.

In order to check the grid independence of the results, the interface shapes on the coarse and the fine grids
have been compared for two different stages in the bubble formation process, as shown in Fig. 16. At a com-
paratively early stage, there is a good agreement, as shown on the left side of the figure. Later, after the neck
has been formed, the agreement deteriorates. At that stage the first bubble has already been pinched off,
Fig. 16. Comparison of the interface shapes for two different stages of the evaporation process obtained on the coarse and on the fine grid.



Fig. 17. The evolution of the vapor liquid interface and the temperature field for the first bubble being pinched off.
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a process that is sensitive to numerical fluctuations of the interface. In principle, also the formation of the first
bubble could be a numerical artifact and could be suppressed on very fine grids, an issue that could not finally
be clarified with the available computational resources. However, already at this stage the qualitative behavior
of the film boiling process as observed by Gibou et al. [7] could be confirmed, while a quasi-periodic bubble
release process as found by Welch and Wilson [27] cannot be approved. It should be noted that, similarly as in
[27], a VOF approach is used, showing that the mushroom-shaped structures are generic and not specific for
the level-set method used by Gibou et al.

An aspect that does not agree with the results of Gibou et al is the shape of the bubbles. In their paper the
edges of the bubbles become unstable finally resulting in a jellyfish-like shape. By contrast, the bubbles of
Fig. 15 always maintain a compact shape. In this respect the results are much closer to those obtained by
Welch and Wilson [27] who also observed compact bubbles without edge instabilities.

All these features concerning bubble shapes and pinch-off are related to the specific interface-tracking
model and not to the evaporation model which is the focus of this work. The results of Fig. 15 demonstrate
the ability of the method presented in this paper to compute evaporating flows in situations more complex
than inherent in the other validation cases. The significance of evaporative mass transfer for the considered
film boiling scenario can be analyzed by plotting the temperature field at different stages of the process. This
is done in Fig. 17 that shows the vapor–liquid interface together with a grayscale plot of the temperature field,
as obtained with the fine grid. The frame on the upper left shows the situation 0.3 s after initialization, in the
subsequent frames time is incremented by 0.05 s. Ten equidistant grayscale levels are displayed, spanning the
range between 505 K (wall) and 500 K (interface). From the figure it becomes apparent that initially evapo-
ration occurs over the complete vapor–liquid interface. However, as soon as a thin neck develops, the temper-
ature field does not significantly extend away from the wall, so that evaporation mainly occurs in the thin
vapor film. Therefore, the dynamics of the mushroom-shaped bubbles shown in Fig. 15 is virtually indepen-
dent of the evaporation model and its implementation.

7. Summary and conclusions

An evaporation model has been developed that by construction is largely independent of the specific real-
ization of an interface-capturing scheme. The model was especially developed to study microscale evaporation
phenomena, but is not limited to it. In context with the latter it has been shown that significant deviations of
the vapor–liquid interface temperature from the saturation temperature should be expected, so that the usual
assumption of an isothermal interface at saturation temperature breaks down. Correspondingly, the evapora-
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tion model incorporates a physical relationship for the evaporation mass flow and allows for deviations from
the saturation temperature. The model relies on a continuum-field representation of the corresponding source
terms in the mass conservation equation that can be tuned by a scale parameter in such a way that numerical
stability of the evaporating liquid front is achieved. The continuum-field representation should make it easy to
implement the model into a number of different interface-capturing schemes irrespective of the numerical
details of interface representation and propagation.

The evaporation model was implemented into the VOF scheme with piecewise linear interface construction
as available within the commercial CFD code FLUENT. Calculations were performed for three analytically
or semi-analytically solvable test cases, two one-dimensional Stefan problems and a free droplet evaporation
problem. In addition, a two-dimensional film boiling problem was considered that has been analyzed by other
authors based on the VOF and the level-set technique.

Good agreement between the numerical and the analytical results was found for the Stefan problems. With
regard to the second Stefan problem, especially the recoil pressure due to the acceleration of vapor emerging
from the interface to the liquid was analyzed. The mass source terms cause a local distortion of the pressure
field, but nevertheless, the overall pressure distribution comes out correctly, showing that the model is capable
of accounting for the recoil from vapor acceleration.

The case of droplet evaporation gives an indication of the limiting factors induced by the interface-captur-
ing scheme. While for small droplets the agreement between the numerical and the semi-analytical results is
good, some deviations were detected in cases where convective heat transfer competes with heat conduction.
Spurious currents were identified as the most probable cause for this unphysical thermal convection that
effects a faster droplet evaporation than in the case of pure conduction. The level of spurious currents in
the employed VOF scheme was quantified in a separate effort and found to be considerable.

In the film boiling problem, a predominant evaporation mode with mushroom-shaped bubbles connected
to the vapor film through a thin neck was identified. The same evaporation mode has been found by other
authors [7], but stands in conflict with quasi-periodic bubble release patterns determined in earlier work
[27]. The application of the model to the film boiling problem demonstrates its usefulness in more complex
situations than in the other validation cases.

The most notable features of the approach presented in this paper are the possibility to implement almost
arbitrary evaporation laws bearing more physical relevance than the assumption of an isothermal interface
and the continuum-field representation of mass source terms that should allow including evaporation mass
transfer into a number of different interface-capturing schemes such as the VOF and the level-set method.
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Appendix A. Numerical error due to the continuum-field representation of the mass source-term

In this appendix, the scale of the numerical error due to the continuum representation of the mass source-
term is computed for a spherical surface of radius b. With a ¼ DtD and k ¼ i=a1=2 Eq. (15) is rewritten as
r2uþ k2u ¼ �u0

a
; ð61Þ
with its Green’s function defined by
r2g þ k2g ¼ �d ð62Þ

and given as
gðrÞ ¼ expðikrÞ
4pr

: ð63Þ
Expanding the Green’s function in spherical harmonics Y lmðh;/Þ gives
gðj r� r0 jÞ ¼ ik
X1
l¼0

Xl

m¼�l

jlðkr<Þhð1Þl ðkr>ÞY �lmðh
0;/0ÞY lmðh;/Þ; ð64Þ
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where jl; h
ð1Þ
l are spherical Bessel and Hankel functions and r< ðr>Þ is the smaller (bigger) of the two values r

and r0. Using a source-term of the form
Table
Maxim

Grid r

30 � 3
60 � 6
120 �
u0ðrÞ ¼ dðr � bÞ ð65Þ

to represent the evaporation of a spherical vapor–liquid interface, expressing u via its Green’s function and
making use of the orthogonality property of the spherical harmonics, it follows that
uðrÞ ¼ ikb2

a
½hðr � bÞj0ðkbÞhð1Þ0 ðkrÞ � hðb� rÞj0ðkrÞhð1Þ0 ðkbÞ	; ð66Þ
with h being the heaviside function. Using
j0ðkrÞ ¼
ffiffiffi
a
p

r
sinh � rffiffiffi

a
p

� �
; hð1Þ0 ðkrÞ ¼ �

ffiffiffi
a
p

r
exp � rffiffiffi

a
p

� �
; ð67Þ
results in
uðrÞ ¼ b
r
ffiffiffi
a
p hðr � bÞ exp � rffiffiffi

a
p

� �
sinh � bffiffiffi

a
p

� �
þ hðb� rÞ exp � bffiffiffi

a
p

� �
sinh � rffiffiffi

a
p

� �� �
: ð68Þ
The two integrals of Eq. (29) are readily evaluated as
C< ¼
b
ffiffiffi
a
p

2
1� bffiffiffi

a
p þ 1þ bffiffiffi

a
p

� �
exp � 2bffiffiffi

a
p

� �� �
; C> ¼ b

ffiffiffi
a
p

1þ bffiffiffi
a
p

� �
sinh � bffiffiffi

a
p

� �
exp � bffiffiffi

a
p

� �
ð69Þ
An expansion of the resulting expression for d of Eq. (30) in powers of a1=2=b yields
d �
ffiffiffi
a
p

b
ð70Þ
to leading order and apart from corrections that are exponentially small in b=a1=2.

Appendix B. Quantification of the spurious currents

In order to quantify the level of spurious currents in the computational framework this work is based on,
the same test case as in the work of Gerlach et al. [6] was considered. It consists of a fluid rod placed in a
domain of square cross section. The problem is treated in 2D where the rod appears as a circle with diameter
2b = 4 cm, while the computational domain has an extension of 6 cm � 6 cm. The domain was meshed with a
uniform Cartesian grid of either 30 � 30, 60 � 60 or 120 � 120 control volumes. The rod has a density ql of
1000 kg/m3 and is placed in a background fluid with a density qg of 1 kg/m3. Since both fluids were treated as
inviscid, the equilibrium state of the rod is characterized by a balance of pressure p and surface tension r. For
the latter a value of 23.61 mN/m was chosen. A time step size of Dt ¼ 10�5 s was used. Since the purpose of
this test case is to quantify the level of spurious currents in the VOF model of FLUENT, no evaporation
model was used. All other solver settings were kept as specified above.

As a measure for the spurious currents, the maximum of the velocity magnitude over the full model domain
was computed, both after 1 time step and after 50 time steps (cf. Table 1). The results show that, independent
of the grid resolution, large values for the maximum velocity are found. The values after 50 time steps are
always higher than those after 1 time step and exceed the natural velocity scale of the system ðr=ðql � bÞÞ

1=2

by about two orders of magnitude. These results underpin the arguments in Section 6 and suggest that
1
um velocity after 1 and after 50 time steps for different grid resolutions

esolution jumax;1j (m/s) jumax;50j (m/s)

0 0.05 2.16
0 0.20 2.69
120 0.04 1.52
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spurious currents can significantly speed up heat and mass transfer processes across a phase boundary. Unfor-
tunately, a direct comparison to the work of Gerlach et al. [6] is not possible, since in their paper no units were
specified for the velocity values.
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